tutorials/028 - DynamoDB.ipynb (372 lines of code) (raw):
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"collapsed": true,
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"[](https://github.com/aws/aws-sdk-pandas)\n",
"\n",
"# 28 - Amazon DynamoDB"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"## Writing Data"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"from datetime import datetime\n",
"from decimal import Decimal\n",
"from pathlib import Path\n",
"\n",
"import pandas as pd\n",
"from boto3.dynamodb.conditions import Attr, Key\n",
"\n",
"import awswrangler as wr"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"### Writing DataFrame"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"table_name = \"movies\"\n",
"\n",
"df = pd.DataFrame(\n",
" {\n",
" \"title\": [\"Titanic\", \"Snatch\", \"The Godfather\"],\n",
" \"year\": [1997, 2000, 1972],\n",
" \"genre\": [\"drama\", \"caper story\", \"crime\"],\n",
" }\n",
")\n",
"wr.dynamodb.put_df(df=df, table_name=table_name)"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"### Writing CSV file"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"filepath = Path(\"items.csv\")\n",
"df.to_csv(filepath, index=False)\n",
"wr.dynamodb.put_csv(path=filepath, table_name=table_name)\n",
"filepath.unlink()"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"### Writing JSON files"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"filepath = Path(\"items.json\")\n",
"df.to_json(filepath, orient=\"records\")\n",
"wr.dynamodb.put_json(path=\"items.json\", table_name=table_name)\n",
"filepath.unlink()"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"### Writing list of items"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"items = df.to_dict(orient=\"records\")\n",
"wr.dynamodb.put_items(items=items, table_name=table_name)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Reading Data"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### Read Items"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Limit Read to 5 items\n",
"wr.dynamodb.read_items(table_name=table_name, max_items_evaluated=5)\n",
"\n",
"# Limit Read to Key expression\n",
"wr.dynamodb.read_items(\n",
" table_name=table_name, key_condition_expression=(Key(\"title\").eq(\"Snatch\") & Key(\"year\").eq(2000))\n",
")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"### Read PartiQL"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>year</th>\n",
" <th>genre</th>\n",
" <th>title</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>2000</td>\n",
" <td>caper story</td>\n",
" <td>Snatch</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" year genre title\n",
"0 2000 caper story Snatch"
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"wr.dynamodb.read_partiql_query(\n",
" query=f\"SELECT * FROM {table_name} WHERE title=? AND year=?\",\n",
" parameters=[\"Snatch\", 2000],\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Executing statements"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[]"
]
},
"execution_count": 29,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"title = \"The Lord of the Rings: The Fellowship of the Ring\"\n",
"year = datetime.now().year\n",
"genre = \"epic\"\n",
"rating = Decimal(\"9.9\")\n",
"plot = \"The fate of Middle-earth hangs in the balance as Frodo and eight companions begin their journey to Mount Doom in the land of Mordor.\"\n",
"\n",
"# Insert items\n",
"wr.dynamodb.execute_statement(\n",
" statement=f\"INSERT INTO {table_name} VALUE {{'title': ?, 'year': ?, 'genre': ?, 'info': ?}}\",\n",
" parameters=[title, year, genre, {\"plot\": plot, \"rating\": rating}],\n",
")\n",
"\n",
"# Select items\n",
"wr.dynamodb.execute_statement(\n",
" statement=f'SELECT * FROM \"{table_name}\" WHERE title=? AND year=?',\n",
" parameters=[title, year],\n",
")\n",
"\n",
"# Update items\n",
"wr.dynamodb.execute_statement(\n",
" statement=f'UPDATE \"{table_name}\" SET info.rating=? WHERE title=? AND year=?',\n",
" parameters=[Decimal(10), title, year],\n",
")\n",
"\n",
"# Delete items\n",
"wr.dynamodb.execute_statement(\n",
" statement=f'DELETE FROM \"{table_name}\" WHERE title=? AND year=?',\n",
" parameters=[title, year],\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"## Deleting items"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"wr.dynamodb.delete_items(items=items, table_name=\"table\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.8.5 ('awswrangler-mo8sEp3D-py3.8')",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.5"
},
"vscode": {
"interpreter": {
"hash": "350d68fa765a50d15f89103ff6102f3b96ae3e7bdc6e5e7a4956e4c1d21b94bd"
}
}
},
"nbformat": 4,
"nbformat_minor": 0
}